t, F, and ρ
There are a few things to remember,
Parameter | Shorthand | Description |
---|---|---|
Significance level | For a 95% level of confidence, we calculate our For a one-tailed test, For a two-tailed test, | |
Test statistic | The test statistic must be calculated. Once we have the test statistic, we can immediately test our hypothesis against the critical values. Alternatively, we can use it to calculate a And recall, of course, that | |
Critical value | With this, we can examine how our test statistic (t) performs with our significance level. The t-distribution table, a.k.a. a critical value distribution table, gives us the t-values we would need to see for various significance levels and degrees of freedom, if we are to accept or reject or hypothesis. Essentially, we reject the null hypothesis if the test statistic "exceeds" the critical value. However, that can change depending on what test we are performing.
| |
Probability value | The probability value calculates the likelihood that our observed t-statistic would exceed the critical value, thus rejecting the null hypothesis. It calculated using the t-statistic, and the degrees of freedom. Alternatively, a table is The If the | |
F | * |
Hypothesis testing
Two-sided test
Using the test statistic,
If the absolute value of the test statistic is greater than the critical value, we reject the null hypothesis.
If the absolute value of the test statistic is less than the critical value, we accept the null hypothesis.
Using the probability value,
If the probability value is less than the significance level
, we reject the null hypothesis. If the probability value is greater than the significance level
, we accept the null hypothesis.
One-sided upper test
Using the test statistic,
If the test statistic is greater than the critical value, we reject the null hypothesis.
If the test statistic is less than the critical value, we accept the null hypothesis.
Using the probability value,
Same as two-sided test.
One-sided lower test
Using the test statistic,
If the statistic is less than the negative of the critical value, we reject the null hypothesis.
If the test statistic is greater than the negative of the critical value, we accept the null hypothesis.
Using the probability value,
Same as two-sided test.
Critical values table for the t-distribution
Using spreadsheet software, the critical value for a particular significance level (
Degrees of freedom | One tail: 90% | One tail: 95.0% | One tail: 97.50% | One tail: 99.0% | One tail: 99.50% | One tail: 99.90% | One tail: 99.950% |
---|---|---|---|---|---|---|---|
0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 | ||
1 | 3.07768 | 6.31375 | 12.70620 | 31.82052 | 63.65674 | 318.30884 | 636.61925 |
2 | 1.88562 | 2.91999 | 4.30265 | 6.96456 | 9.92484 | 22.32712 | 31.59905 |
3 | 1.63774 | 2.35336 | 3.18245 | 4.54070 | 5.84091 | 10.21453 | 12.92398 |
4 | 1.53321 | 2.13185 | 2.77645 | 3.74695 | 4.60409 | 7.17318 | 8.61030 |
5 | 1.47588 | 2.01505 | 2.57058 | 3.36493 | 4.03214 | 5.89343 | 6.86883 |
6 | 1.43976 | 1.94318 | 2.44691 | 3.14267 | 3.70743 | 5.20763 | 5.95882 |
7 | 1.41492 | 1.89458 | 2.36462 | 2.99795 | 3.49948 | 4.78529 | 5.40788 |
8 | 1.39682 | 1.85955 | 2.30600 | 2.89646 | 3.35539 | 4.50079 | 5.04131 |
9 | 1.38303 | 1.83311 | 2.26216 | 2.82144 | 3.24984 | 4.29681 | 4.78091 |
10 | 1.37218 | 1.81246 | 2.22814 | 2.76377 | 3.16927 | 4.14370 | 4.58689 |
11 | 1.36343 | 1.79588 | 2.20099 | 2.71808 | 3.10581 | 4.02470 | 4.43698 |
12 | 1.35622 | 1.78229 | 2.17881 | 2.68100 | 3.05454 | 3.92963 | 4.31779 |
13 | 1.35017 | 1.77093 | 2.16037 | 2.65031 | 3.01228 | 3.85198 | 4.22083 |
14 | 1.34503 | 1.76131 | 2.14479 | 2.62449 | 2.97684 | 3.78739 | 4.14045 |
15 | 1.34061 | 1.75305 | 2.13145 | 2.60248 | 2.94671 | 3.73283 | 4.07277 |
16 | 1.33676 | 1.74588 | 2.11991 | 2.58349 | 2.92078 | 3.68615 | 4.01500 |
17 | 1.33338 | 1.73961 | 2.10982 | 2.56693 | 2.89823 | 3.64577 | 3.96513 |
18 | 1.33039 | 1.73406 | 2.10092 | 2.55238 | 2.87844 | 3.61048 | 3.92165 |
19 | 1.32773 | 1.72913 | 2.09302 | 2.53948 | 2.86093 | 3.57940 | 3.88341 |
20 | 1.32534 | 1.72472 | 2.08596 | 2.52798 | 2.84534 | 3.55181 | 3.84952 |
21 | 1.32319 | 1.72074 | 2.07961 | 2.51765 | 2.83136 | 3.52715 | 3.81928 |
22 | 1.32124 | 1.71714 | 2.07387 | 2.50832 | 2.81876 | 3.50499 | 3.79213 |
23 | 1.31946 | 1.71387 | 2.06866 | 2.49987 | 2.80734 | 3.48496 | 3.76763 |
24 | 1.31784 | 1.71088 | 2.06390 | 2.49216 | 2.79694 | 3.46678 | 3.74540 |
25 | 1.31635 | 1.70814 | 2.05954 | 2.48511 | 2.78744 | 3.45019 | 3.72514 |
26 | 1.31497 | 1.70562 | 2.05553 | 2.47863 | 2.77871 | 3.43500 | 3.70661 |
27 | 1.31370 | 1.70329 | 2.05183 | 2.47266 | 2.77068 | 3.42103 | 3.68959 |
28 | 1.31253 | 1.70113 | 2.04841 | 2.46714 | 2.76326 | 3.40816 | 3.67391 |
29 | 1.31143 | 1.69913 | 2.04523 | 2.46202 | 2.75639 | 3.39624 | 3.65941 |
30 | 1.31042 | 1.69726 | 2.04227 | 2.45726 | 2.75000 | 3.38518 | 3.64596 |
60 | 1.29582 | 1.67065 | 2.00030 | 2.39012 | 2.66028 | 3.23171 | 3.46020 |
120 | 1.28865 | 1.65765 | 1.97993 | 2.35782 | 2.61742 | 3.15954 | 3.37345 |
1000 | 1.28240 | 1.64638 | 1.96234 | 2.33008 | 2.58075 | 3.09840 | 3.30028 |
1.28155 | 1.64485 | 1.95996 | 2.32635 | 2.57583 | 3.09023 | 3.29053 |
table, or P table
This table was calculated using the spreadsheet function with inputs for the t-statistic (t), degrees of freedom (DF), and whether our test is two-sided (2), or one-sided (1): TDIST(t, DF, sidedness). The resulting
Row: t-statistic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1.30 | 0.209 | 0.162 | 0.142 | 0.132 | 0.125 | 0.121 | 0.117 | 0.115 | 0.113 | 0.111 |
1.32 | 0.206 | 0.159 | 0.139 | 0.129 | 0.122 | 0.117 | 0.114 | 0.112 | 0.110 | 0.108 |
1.34 | 0.204 | 0.156 | 0.136 | 0.126 | 0.119 | 0.114 | 0.111 | 0.109 | 0.107 | 0.105 |
1.36 | 0.202 | 0.153 | 0.134 | 0.123 | 0.116 | 0.111 | 0.108 | 0.105 | 0.103 | 0.102 |
1.38 | 0.200 | 0.151 | 0.131 | 0.120 | 0.113 | 0.108 | 0.105 | 0.102 | 0.100 | 0.099 |
1.40 | 0.197 | 0.148 | 0.128 | 0.117 | 0.110 | 0.106 | 0.102 | 0.100 | 0.098 | 0.096 |
1.42 | 0.195 | 0.146 | 0.125 | 0.114 | 0.107 | 0.103 | 0.099 | 0.097 | 0.095 | 0.093 |
1.44 | 0.193 | 0.143 | 0.123 | 0.112 | 0.105 | 0.100 | 0.097 | 0.094 | 0.092 | 0.090 |
1.46 | 0.191 | 0.141 | 0.120 | 0.109 | 0.102 | 0.097 | 0.094 | 0.091 | 0.089 | 0.087 |
1.48 | 0.189 | 0.139 | 0.118 | 0.106 | 0.099 | 0.095 | 0.091 | 0.089 | 0.087 | 0.085 |
1.50 | 0.187 | 0.136 | 0.115 | 0.104 | 0.097 | 0.092 | 0.089 | 0.086 | 0.084 | 0.082 |
1.52 | 0.185 | 0.134 | 0.113 | 0.102 | 0.094 | 0.090 | 0.086 | 0.083 | 0.081 | 0.080 |
1.54 | 0.183 | 0.132 | 0.111 | 0.099 | 0.092 | 0.087 | 0.084 | 0.081 | 0.079 | 0.077 |
1.56 | 0.181 | 0.130 | 0.108 | 0.097 | 0.090 | 0.085 | 0.081 | 0.079 | 0.077 | 0.075 |
1.58 | 0.180 | 0.127 | 0.106 | 0.095 | 0.087 | 0.083 | 0.079 | 0.076 | 0.074 | 0.073 |
1.60 | 0.178 | 0.125 | 0.104 | 0.092 | 0.085 | 0.080 | 0.077 | 0.074 | 0.072 | 0.070 |
1.62 | 0.176 | 0.123 | 0.102 | 0.090 | 0.083 | 0.078 | 0.075 | 0.072 | 0.070 | 0.068 |
1.64 | 0.174 | 0.121 | 0.100 | 0.088 | 0.081 | 0.076 | 0.073 | 0.070 | 0.068 | 0.066 |
1.66 | 0.173 | 0.119 | 0.098 | 0.086 | 0.079 | 0.074 | 0.070 | 0.068 | 0.066 | 0.064 |
F-statistic, a.k.a F-multiplier
While the t-statistic is easily calculated based on the percentage of the interval and the degrees of freedom (derived from the sample or population size), the F-statistic has two sets of degrees of freedom (DF). There is the
The numerator will generally be set as
So for example, if we want are using 95% as our confidence, and we are working with 100 samples for two variables, then we wind up with
The spreadsheet command is,
=F.DIST.RT(x, degree_freedom1, degree_freedom2)
The spreadsheet command for the F critical value is,
=F.INV.RT(
See it in action
Please refer to this Google Sheets spreadsheet,
https://docs.google.com/spreadsheets/d/1H3EtaltideRpUeVNMq7jxO2mea8NGcXHz4bYxhAJu58/edit?usp=sharing
Endnotes
https://online.stat.psu.edu/stat200/book/export/html/213
Some reading about the p value,
https://www.math.arizona.edu/~piegorsch/571A/TR194.pdf
A useful reference table for F values is below,
http://www.socr.ucla.edu/Applets.dir/F_Table.html
How to calculate the p-value in spreadsheet software,
https://support.google.com/docs/answer/3295914?hl=en
https://spreadsheeto.com/p-value-excel/#p-value
https://ms-office.wonderhowto.com/how-to/find-p-value-with-excel-346366/
Some reading about the various tables
https://www.sheffield.ac.uk/polopoly_fs/1.43999!/file/tutorial-10-reading-tables.pdf